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Systems and “Platonic” Models

Physical system described by measure space (Ω,ΣΩ, ν)

Governing physics captured by closed-form diff. eq. model ω̇ = Φ(ω)
I Markovian—orbits ωt determined by single ω0
I Deterministic—orbit ωt(ω0) always the same for same ω0

closure relationship between degrees of freedom of ω
I ω a vector {ωi}—each ωi a DoF
I evolution of single ωi depends on interactions with other DoF
I physics “captured”/“modeled” with deterministic, Markov dynamic closed over {ωi}

(“Unreasonable Effectiveness of Mathematics”?)
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Measurements and Partial Observations
For given (Ω,ΣΩ, ν,Φ), collection of instrument measurements is measurable function
X : Ω→ X , s. t. xt = X(ωt)

Generally interested in partially-observed systems, for which X is not invertible:
knowledge of x insufficient for determining state ω of the true system

=⇒ “unobservable” or “immeasureable” degrees of freedom in ω not in x = X(ω)

Initial observation x0 induces uncertainty over ω0 (e.g. MaxEnt), giving µ0 : Ω→ R

=⇒ probability space (Ω,ΣΩ, µt,Φ), with µt governed by Perron-Frobenius

observables X are random variables governed by Koopman

(foundational set up for nonequilibrium statistical mechanics)
M. Mackey “Time’s Arrow: The Origins of Thermodynamic Behavior”, Springer (1993)
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Models From Partial Observations
Explicit Models — physics simulations
I use histories {x0, x−1, . . .} to explicitly “fill in the gaps” of unobserved DoF
I fit (approximated) closed-form deterministic Markov model Φ̃τ

α

I auxiliary dyn sys whose numerical solutions approximate evolution ωt = Φt(ω0)

Implicit Models — data-driven methods
I No direct reference to physics (degrees of freedom or their governing equations)
I learn a mapping T τ that evolves measurement observables forward in time
I implicitly “fills in the gaps” of unobserved DoF with delay-coordinate embeddings
I learns implicit Markov dynamic with Koopman operator

Will show certain data-driven models do implicitly what physics simulations do explicitly
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Physics-Based Simulations

data image ut — approximated coarse-graining of system state ωt
data assimilation — u0 = A(x0, x−1, . . .) most consistent with history of observations

simulation ut+τ = Φ̃τ
α ut — uses parameterization α for Markovian closure

unobserved DoF not in X explicitly “filled in” by coarse-graining ut or parameterization α

ut+τ = Φ̃τ
α ut explicitly approximates governing physics ωt+τ = Φτωt

model error from parameterization α

initialization error from u0 = A(x0, x−1, . . .) (e.g. chaos)
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Instantaneous Data-Driven Models
(Instantaneous) target function T τ : X → X learned from data

minimize ||T τ ◦X − U τX||2L2(Ω,µ∗)

where U τXt ≈ xt+τ from training data — i.e. loss = ||T τ (xt)− xt+τ ||2

regression function Zτ unique minimizer — aka conditional expectation Zτ = E[U τXt|Xt]

Decompose model error as

E(T τ ) := ||T τ ◦X − U τX||2 = Θ(T τ ) + ΞτX

Θ(T τ ) = ||T τ − Zτ ||2 — how far given T τ is from optimum

ΞτX = ||Zτ ◦X − U τX||2 — intrinsic error due to partial observations X

R. Alexander and D. Giannakis (2020) Physica D
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Hilbert Space Formulation

System observables: H = L2(µ∗)
H = {f : Ω→ X :

∫
Ω ||f2(ω)||2dµ(ω) <∞}

Functions of measurement observations:
V = {g : X → X : g ◦X ∈ H}

Subspace of measurement observables: HX = L2(µX∗ )
HX = {f ∈ H : f = g ◦X for some g ∈ V }

Regression function the unique element in V s.t.

E[U τXt|Xt] = Zτ := argmin
g∈V

||g ◦X − U τX||2H

F. Gliani, D. Giannakis, J. Harlim (2021) Physica D
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Data-Driven Approximations of U τ

EDMD: Galerkin projection onto HΨ ⊆ HX ⊂ H using Ψ ⊆ V
M. O. Williams, I. G. Kevrekidis, and C. W. Rowley (2015). Journal of Nonlinear Science

S. Klus, P. Koltai, and C. Schütte (2016). Journal of Computational Dynamics

ω0 ∈ Ω

System

x0 = X(ω0)

Observations

X : Ω→ X
[ψ1(x0), . . . , ψk(x0)]T

Galerkin Approximation

Ψ

ωt = Φt(ω0)

Φt

xt = X(ωt)
X : Ω→ X

[Ut
Xψ

1(x0), . . . ,Ut
Xψ

k(x0)]T

[ψ1(xt), . . . , ψ
k(xt)]

T

Ut
X

Ψ

minimize

Xt = U tX
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Data-Driven Approximations of U τ

Forecast using identity function fX(x) = x:

T τEDMD(xt) = Uτ
X [fX ◦X](ωt)

=⇒ must have fX ∈ Ψ ⊆ V express as fX(x) =
∑
l ηlvl(x), with Uτ

Xvl = λlvl
Linear forecast model

E[Xt+τ |Xt] ≈ T τEDMD(xt) =
∑
l

λlηlvl(xt)

In fully-observed case (X = Ω): Uτ
X → U τ in limit Ψ→ V (HΨ → HX = H)

M. Korda and I. Mezic̀ (2018) Journal of Nonlinear Science

recover regression function in partially-observed case: HΨ → HX ⊂ H for Ψ→ V

Uτ
X [fX ◦X] =

∑
l

λlηlv ◦X = Zτ ◦X

Rupe et. al. (2021) in progress

10 / 28



Data-Driven Approximations of U τ

Forecast using identity function fX(x) = x:

T τEDMD(xt) = Uτ
X [fX ◦X](ωt)

=⇒ must have fX ∈ Ψ ⊆ V express as fX(x) =
∑
l ηlvl(x), with Uτ

Xvl = λlvl
Linear forecast model

E[Xt+τ |Xt] ≈ T τEDMD(xt) =
∑
l

λlηlvl(xt)

In fully-observed case (X = Ω): Uτ
X → U τ in limit Ψ→ V (HΨ → HX = H)

M. Korda and I. Mezic̀ (2018) Journal of Nonlinear Science

recover regression function in partially-observed case: HΨ → HX ⊂ H for Ψ→ V

Uτ
X [fX ◦X] =

∑
l

λlηlv ◦X = Zτ ◦X

Rupe et. al. (2021) in progress
10 / 28



Intrinsic Geometry and Delay-Coordinate Embeddings
Attractor geometry of underlying system (Ω,Φ) can be recovered using
delay-coordinate embeddings ←−x m = (xt, xt−1, . . . , xt−m), (m is embedding dimension)

N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw (1980) PRL F. Takens (1981)

delay-coordinate observables: Koopman ⇐⇒ Laplace-Beltrami operators
D. Giannakis (2019) Applied and Computational Harmonic Analysis
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Intrinsic Computation of Symbolic Processes
System

ωt ∈ Ω

Observable

X : Ω→ A
Measurements

{xt = X(ωt) ∈ A}
Model

←−T τ :
←−
X t 7→ Xt+1

Introduced to Dynamical Systems and Ergodic theory:
Discrete Information: A.N. Kolmogorov (1959); Y.G. Sinai (1959); Y. Pesin (1977)

Discrete Computation: B. Weiss (1973); W. Krieger (1974); R. Fischer (1975); J. P. Crutchfield, K. Young (1989)
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Causal States: Minimal Models for Optimal Prediction
past: ←−x t = {. . . , xt−2, xt−1, xt}; future: −→x t = {xt+1, xt+2, xt+3, . . .}

predictive equivalence:

←−x i ∼ε ←−x j ⇐⇒ Pr(−→X |←−x i) = Pr(−→X |←−x j) ⇐⇒ ε(←−x i) = ε(←−x j)

causal states: equivalence classes of ∼ε generated by ε-function, ε :←−x t 7→ St

St = ε(←−x t) = {←−x i : Pr(−→X |←−x i) = Pr(−→X |←−x t)}

causal state dynamics are Markovian:

St+1 = MεSt

Follows from predictive equivalence and ε-function: St+1 uniquely determined by St and xt+1

C. R. Shalizi and J.P. Crutchfield (2001) J. Stat. Phys.
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Perspective From Mori-Zwanzig Formalism
Expand U t+1 in terms of projection operator P : H → HX and Q = I − P

U t+1 =
t∑

k=0
U t−kPU(QU)k + (QU)t+1

Apply both sides to measurement observable X ∈ H: xt+1 = Xt+1(ω0) = [U t+1X](ω0)

Discrete-time MZ equation:

xt+1 = M0(xt) +
t∑

k=1
Mk(xt−k) + ξt+1(ω0)

M0 → Markov term (T 1); Mk = P (ξk ◦ Φ)→ Memory; ξt+1(ω0)→ orthogonal “noise” (ΞτX)

K. Lin and F. Lu (2020) J. Comp. Phys. F. Gliani, D. Giannakis, J. Harlim (2021) Physica D

Data-driven methods: Chorin, Hald, Kupferman (2003); Chorin, Lu (2015); Lin, Lu (2020); Lin, Tian, Livescu, Anghel (2021)
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History-Dependent Models
Apply MZ expanded Koopman to delay-coordinate observables (pasts) :

xt+1 =←−M0(←−x mt ) + noise

Memory dependence folded into observables; noise (ΞτX ?) vanishes in m→∞ limit
K. Lin and F. Lu (2020) J. Comp. Phys. F. Gliani, D. Giannakis, J. Harlim (2021) Physica D

History-dependent data-driven models: ←−T m
τ :←−Xm

t 7→ Xt+τ (←−T 1 =←−M0)

minimize ||←−T m
τ ◦
←−
Xm − U τ ◦X||2

Linear approximations of ←−M0 using Hankel matrix methods

 | |
←−x mt . . . ←−x mt+N
| |


Brunton, Brunton, Proctor, Kaiser, Kutz (2017) Nature Comms; Arbabi, Mezic (2017) SIAM App. Dyn. Sys.
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Intrinsic Geometry Meets Intrinsic Computation
Optimize for all lead times τ =⇒ reconstruct predictive distributions Pr(−→X |←−x )

unifilarity /causality: one-to-one corresp. between ←−M0 (intrinsic geometry)
and Mε (intrinsic computation)

Theorem: Action of ←−M0 always same for every ←−x t ∈ St; and

Output of ←−M0 (realization xt+1) “on St” uniquely determines output of Mε (St+1)

by definition: Pr(Xt+1|←−x t) = Pr(Xt+1|St = ε(←−x t)),

Pr(Xt+1|←−x t) determined by ←−M0, and ε(←−x i) = ε(←−x j) =⇒ ←−
M0(←−x i) =←−M0(←−x j)

St = ε(←−x t) and xt+1 uniquely determines St+1 = ε(←−x t+1) = ε(←−x txt+1)

Rupe et. al. (2021) in progress

16 / 28



Intrinsic Geometry Meets Intrinsic Computation
Optimize for all lead times τ =⇒ reconstruct predictive distributions Pr(−→X |←−x )

unifilarity /causality: one-to-one corresp. between ←−M0 (intrinsic geometry)
and Mε (intrinsic computation)

Theorem: Action of ←−M0 always same for every ←−x t ∈ St; and

Output of ←−M0 (realization xt+1) “on St” uniquely determines output of Mε (St+1)

by definition: Pr(Xt+1|←−x t) = Pr(Xt+1|St = ε(←−x t)),

Pr(Xt+1|←−x t) determined by ←−M0, and ε(←−x i) = ε(←−x j) =⇒ ←−
M0(←−x i) =←−M0(←−x j)

St = ε(←−x t) and xt+1 uniquely determines St+1 = ε(←−x t+1) = ε(←−x txt+1)

Rupe et. al. (2021) in progress

16 / 28



Connecting Explicit and Implicit Models
(* disregarding noise / error*)

Implicit Data-Driven Models

xt+τ =←−M τ
0(←−x mt )

Explicit Physics Simulation Models

xt+τ = M̃ τ
0 (←−x mt )

where M̃0 = X̃ ◦ Φ̃τ
α ◦A, X̃ “simulation measurements”

Rupe et. al. (2021) in progress
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Partitioning the Past
Continuous Histories Assumption

←−x i → ←−x j =⇒ Pr(−→X |←−x i)→ Pr(−→X |←−x j)

G.M. Goerg and C.R. Shalizi (2012)

Equivalently: ε-function absolutely continuous over ←−X

Operational, approximate version—based on γ-partition:

k1 k2 k3

k4
k5 k6

←−X m←−x m ∈ ←−k 1

γ(←−x mi ) = γ(←−x mj ) =⇒ ε(←−x mi ) = ε(←−x mj )

Approximated ε-function piece-wise constant — converges* in ∞-limit
Rupe et. al. (2019) MLHPC Rupe et. al. (2021) in progress
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Causal State Analog Forecasting Algorithm
I collect finite-length pasts, futures from training data
I cluster pasts into K γ-partition elements K = {

←−
k 1,
←−
k 2, . . . ,

←−
k K} using K-Means

I for each
←−
k i ∈ K, collect associated futures {−→x t :←−x t ∈

←−
k i}

I this gives sample measure −→µ n = 1
n

∑n
j=1 δ−→x j

I construct kernel density estimator: µ̂i = 1
n

n∑
j=1

Kh(−→x ,−→x j) δ−→x j

Predictive distributions approximated as:

Pr(−→X |←−X =←−x ) ∼ 1
n

n∑
i=1

ciKh(−→x ,−→x i) δ−→x j

For CSAF have:

ci =
{

1 if γ(←−x i) = γ(←−x )
0 otherwise

For CONCAUST have:
c(←−x ) = (G

←−
X + εI)−1K(←−x )
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Forecasting the Lorenz Model

dx
dt = σ(y − x)

dy
dt = x(ρ− z)− y

dz
dt = xy − βz
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Fully-Observed Case
Numerical evolution of (x, y, z) CSAF forecast of (x, y, z)
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Partially-Observed Case (x variable only)

Numerical
evolution
of x

CSAF forecast
of x
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Delay-Coordinate Reconstructions
Reconstruction from true evolution
(xt, xt−1, xt−2) CSAF forecast reconstruction (xt, xt−1, xt−2)
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Hankel DMD / HAVOK Lorenz Forecast

S.L. Brunton, B.W. Brunton, J.L. Proctor, E. Kaiser, J.N. Kutz
Chaos as an intermittently forced linear system
Nature Comms (2017)
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Real-World Carbon Data

Training data
and forecast of
net ecological
exchange (NEE)

Training data
and forecast of
ground carbon
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NEE Ensemble Forecast

10 ensemble
members of NEE
forecast

Mean forecast of
20-member
ensemble NEE
forecast
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Conclusions

I certain data-driven models do implicitly what physics simulations do explicitly
I theoretical underpinnings in Koopman theory, delay-coordinate embeddings, and

Mori-Zwanzig formalism
I best approach for given system with finite data an open question
I physics-informed machine learning (PIML) emerging framework for combining

explicit and implicit modeling

Thanks to: Monty Vesselinov, Aric Hagberg, Dan O’Malley, Jim Crutchfield, Nicolas
Brodu, Derek DeSantis, Stefan Klus, Balu Nadiga, Paul Riechers, Mitko Vassilev

Thank you!
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Kernel Analog Forecasting

training data: data = {x0, x1, . . . , xT }

(regular) Analog Forecasting: identify analog xa ∈ data via a = argmin
i∈{0,...,T−τ}

D(x, xi)

Forecast of x is what follows time τ after the analog

T τAF(x) = xa+τ =
∫
X
U τXt dδxa

Kernel Analog Forecasting: use similarity kernel to evaluate ensemble of analogs

T τKAF(x) =
∫
X U

τXt dµ̂X with µ̂X = 1
n

∑n
i=1Kh(x, xi)δxi

Pr(Xt+τ |Xt = x) ∼ 1
n

n∑
i=1

Kh(x, xi)xi+τ δxi

Z. Zhao and D. Giannakis (2016) Nonlinearity
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